Internal motion and electron transfer in proteins: a picosecond fluorescence study of three homologous azurins.
نویسندگان
چکیده
We have carried out a picosecond fluorescence study of holo- and apoazurins of Pseudomonas aeruginosa (azurin Pae), Alcaligenes faecilis (azurin Afe), and Alcaligenes denitrificans (azurin Ade). Azurin Pae contains a single, buried tryptophyl residue; azurin Afe, a single surface tryptophyl residue; and azurin Ade, tryptophyl residues in both environments. From anisotropy measurements we conclude that the interiors of azurins Pae and Ade are not mobile enough to enable motion of the indole ring on a nanosecond time scale. The exposed tryptophans in azurins Afe and Ade show considerable mobility on a few hundred picosecond time scale. The quenching of tryptophan fluorescence observed in the holoproteins is interpreted in terms of electron transfer from excited-state tryptophan to Cu(II). The observed rates are near the maximum predicted by Marcus theory for the separation of donor and acceptor. The involvement of protein matrix and donor mobility for electron transfer is discussed. The two single-tryptophan-containing proteins enable the more complex fluorescence behavior of the two tryptophans of azurin Ade to be understood. The single-exponential fluorescence decay observed for azurin Pae and the nonexponential fluorescence decay observed for azurin Afe are discussed in terms of current models for tryptophan photophysics.
منابع مشابه
A comparative picosecond-resolved fluorescence study of tryptophan residues in iron-sulfur proteins.
The fluorescence intensity and anisotropy decays of the intrinsic tryptophan emission from six Fe/S proteins (ranging from the very simplest ones to enzyme complexes containing one, two or more Trp residues) were measured. All proteins were examined in the reduced and the oxidized state. In either redox state each protein exhibits ultrarapid tryptophan fluorescence decay on the picosecond times...
متن کاملFolding degrees of azurins and pseudoazurins: Implications for structure and function
A quantitative measure of the degree of folding of azurins and pseudoazurins has been made. We have found that the reduction potential of azurins and pseudoazurins is a function of the contribution to the degree of folding of His117, a key amino acid in electron transfer which is directly bonded to copper in these proteins. The folding degree of His117 explains 95% of the variance in the experi...
متن کاملPhotophysics of Metalloazurinst
The fluorescence lifetimes of Cu(II), Cu(I), Ag(I), Hg(II), Co(II), and Ni(I1) azurin Pae from Pseudomonas aeruginosa and Cu(II), Cu(I), and Hg(1I) azurin Afe from Alcaligenes faecalis were measured at 295 K by time-correlated single-photon counting. In addition, fluorescence lifetimes of Cu(I1) azurin Pae were measured between 30 and 160 K and showed little change in value. Ultraviolet absorpt...
متن کاملPicosecond UV laser induced morphological, biochemical and biological changes in Bombyx mori
Background: In the light of various applications of UV laser in biological system, we have investigated the effect of picosecond UV laser radiation on silkworm Bombyx mori. Materials and Methods: The eggs of NB4D2 of different stages were exposed to pico second pulse laser at 355 nm from Nd:YAG laser for different durations. Results: Due to irradiation alterations in crescent larval body...
متن کاملTwo distinct azurins function in the electron-transport chain of the obligate methylotroph Methylomonas J.
Methylomonas J is an obligate methylotroph although it is unable to grow on methane. Like Pseudomonas AM1, it produces two blue copper proteins when growing on methylamine, one of which is the recipient of electrons from the methylamine dehydrogenase. When grown on methanol, only the other blue copper protein is produced. We have determined the amino acid sequences of these blue copper proteins...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 26 10 شماره
صفحات -
تاریخ انتشار 1987